Storage Foundation for Oracle RAC with EMC SRDF

Disaster Recovery Solution

April, 2007

Naveen Williams, Symantec Corporation
TABLE OF CONTENTS

OVERVIEW ..3

DISASTER RECOVERY ..4

Storage Foundation for Oracle RAC ... 4
 Key Benefits of SF RAC ..4

Typical SFRAC Environment with GCO / SRDF ... 5
 Key Components ..5
 Environment Setup .. 5
 Non-Replicated Shared Storage for each Cluster ... 6
 Local Storage for Oracle and CRS Binaries on each Node .. 6
 Software Installation and Configuration .. 6

Failure and Recovery Scenarios ... 11
 Intra-Cluster Failover and Failback ... 11
 Scenario A: .. 11
 Scenario B: .. 12
 Scenario C: .. 13
 Scenario D: .. 14
 Scenario E: .. 15
 Scenario F: .. 15
 Scenario G: .. 16

Symmetrix Remote Data Facility (SRDF) .. 16
 SRDF Links ... 17
 Unidirectional / Bidirectional Data Transfer .. 17
 SRDF Setup and Management .. 20

CONCLUSION ..25
Overview

This whitepaper describes the clustering and replication technologies offered by Symantec’s Storage Foundation for Oracle RAC Suite. This document focuses on using EMC’s SRDF to replicate data to the disaster recovery site. The document also provides technical details on setting up a Disaster Recovery solution for Oracle Real Application Clusters (RAC). This paper is limited to the technical details of SRDF in synchronous mode with a unidirectional configuration.
Disaster Recovery

It is the ability to recover mission critical applications and databases to a normal operational state at a remote location. The data is being replicated from the primary cluster site to the remote sites by either using hardware-based or host-based replication methods.

In host-based replication, host writes to local storage and sends writes to the remote site using the network. In hardware-based replication, the storage array writes to the local disk and sends data to the remote array. Some of the products which use hardware-based replication are SRDF from EMC, True Copy from Hitachi, Metro Mirror from IBM, Snap Mirror from Netapp, Mirror View from Clarion. Veritas Volume Replicator (VVR) is host-based replication.

Storage Foundation for Oracle RAC

Storage Foundation for Oracle RAC (SFRAC) from Symantec provides an infrastructure for storage management, high availability and disaster recovery technologies for implementing robust, manageable and scalable Oracle Real Application Clusters.

SFRAC is on top of the stack consisting of Veritas Cluster Server (VCS), Cluster File System (CFS), Cluster Volume Manager (CVM) and other key features as listed below.

Key Benefits of SF RAC

- Shared Storage Management has been highly simplified by the use of Cluster File System (CFS)
- Less Complexity and High Performance with Cluster Volume Manager (CVM)
- Dynamic Multi-pathing (DMP) helps increase disk availability and I/O load balancing across all the available paths
- Oracle disk I/O performance has been significantly improved with Veritas Oracle Disk Manager (ODM)
- VCSIPPC for RAC inter-process communication across the private network links in a cluster. Load Balancing and Link failovers are handled efficiently using LLT
- I/O fencing to prevent data corruption on shared storage
- PrivNIC Agent provides high availability of private interconnects for CRS
- CSSD Application Agent manages startup and shutdown of CRS
- Global Cluster Option manages failover seamlessly to a remote cluster site during a disaster situation
- VCS Agents to monitor and manage Database instances, Virtual IPs, Listeners, Diskgroups, Volumes and Mounts
- Replication Agents like SRDF to monitor, manage, failover to the remote site and change the direction of the replication
Typical SFRAC Environment with GCO / SRDF

Key Components

Replication Agent (EMC SRDF)
- Monitors and manages state of the Symmetrix SRDF device groups.
- The direction of replication can be changed making the remote cluster as the source and the local cluster as the target.

Wide Area Connector (WAC)
- Registers with the local VCS engine and facilitates inter-cluster communication
- Manages WAN heartbeat and notifies VCS in case of a HB failure

Heartbeats
- Processes started by WAC to monitor remote and local clusters and storage

Global Group
- A service group with properties to enable wide-area failover. The group can be set to failover automatically when the local cluster or storage is broken.

Environment Setup
Hardware and Replicated Shared Storage
Identify the hardware and storage requirements. Install the CLI package for Symmetrix array. Based on the RAC database size, identify the number of EMC disks/devices that will be replicated to the remote EMC storage array. The Oracle database files will reside on these disks. Create Device groups and RDF pairs. For further information refer to the SRDF section of this paper.

Sample Setup

Cluster1 nodes = thor248, thor249
Cluster2 nodes = thor246, thor247

CRS_HOME = /local/oracle/crs (Installed locally on each node)
ORACLE_HOME = /oracle/10g (Installed locally on each node)
OCR and VOTE-DISK = /ocrvote (Cluster File System using non-replicated disks)
Oracle DB Data files = /oradata (Cluster File System using replicated disks)

Non-Replicated Shared Storage for each Cluster

Identify shared storage that will be used for CRS OCR and VOTE-DISK files at the local and the remote clusters. OCR and VOTE-DISK files will not be replicated to the remote cluster. These files will be shared within the cluster.

Local Storage for Oracle and CRS Binaries on each Node

Identify local storage for the Oracle RDBMS and CRS installation.

Software Installation and Configuration

Create disk groups, volumes and CFS using Shared Replicated (/oradata) and Shared Non-Replicated disks (/ocrvote). Install SFRAC with GCO option on primary and remote cluster. Install CRS and Oracle RDBMS local storage on both the clusters. Create the database on replicated storage on the primary cluster.
Configure Global Cluster Option by setting heartbeat, wac, gcoip and remotecluster resources in VCS. The following example displays the contents in main.cf
group ClusterService {
 SystemList = (thor248 = 0, thor249 = 0)
 AutoStartList = (thor248, thor249)
 OnlineRetryLimit = 3
 OnlineRetryInterval = 120
}

Application vac {
 StartProgram = "/opt/URTSvs/bin/vacstart"
 StopProgram = "/opt/URTSvs/bin/vacstop"
 MonitorProcesses = ("/opt/URTSvs/bin/vac")
 RestartLimit = 3
}

IP gcoip {
 Device = bge0
 Address = "10.182.13.98"
 NetMask = "255.255.240.0"
}

NIC csgnic {
 Device = bge0
}

gcoip requires csgnic
vac requires gcoip
Install and configure SRDF Agent. On Solaris, the agent binaries are available as a set of packages which can be installed using ‘pkgadd’ command. Configure ReplicatedData Global Failover Group in VCS on each cluster. This group is online only on one cluster. You could configure the SRDF agent using ‘hawizard srdf’.
The contents of the main.cf on the secondary cluster are similar to primary. Note that the Replicated Data Group is offline on the secondary till a failover occurs from the primary. The following example displays part of the contents in main.cf on the secondary cluster.
Failure and Recovery Scenarios

Intra-Cluster Failover and Failback

Scenario A:

Failover – Node A is down

Service Groups (Failover) from Node A failover to Node B.
Parallel Service Groups like Oracle DB group remains online on Node B.

![Diagram of network and storage link between two nodes]
Failback – Node A is up

Service Groups (Failover) from Node B can manually failback to Node A.
Parallel Service Groups like Oracle DB group are online on Node A and Node B.
No change to replication roles. C2 remains Write-disabled.

Inter-Cluster Failover and Failback

Scenario B:
Failover – Node A and Node B are down

Global Service Groups failover to Cluster 2 from Cluster 1. The failover policy can be set to automatic or manual (default).
Replication roles are reversed by SRDF Agent.
Storage array on Cluster 1 is write-disabled.
Storage array on Cluster 2 is write-enabled.
Failback – Node A and Node B are up

When the primary nodes are back online, Global Service Groups can manually failback to Cluster 1.

Replication roles are reversed by SRDF Agent.

Storage array on Cluster 1 is write-enabled.

Storage array on Cluster 2 is write-disabled.

Scenario C:

Failover – Storage Links are down on the Primary

When the Storage link on just one node on the Primary is down, the resources will become offline on that node based on the service group and resource dependencies.

When both the Storage links are down on the primary cluster, Global Service Groups failover to Cluster 2 from Cluster 1.

Replication roles are reversed by SRDF Agent.

Storage array on Cluster 1 is write-disabled.

Storage array on Cluster 2 is write-enabled.
Failback – Storage links are up on the Primary

When the storage links are back online, Global Service Groups can manually failback to Cluster 1.

Replication roles are reversed by SRDF Agent.

Storage array on Cluster 1 is write-enabled.

Storage array on Cluster 2 is write-disabled.

Scenario D:

Failover – Primary storage array loss

When the Primary Storage both the Storage links are down on the primary cluster, Global Service Groups failover to Cluster 2 from Cluster 1.

Storage array on Cluster 2 is write-enabled.

Failback – Storage array and storage links are up on the Primary

July 2007
When the Storage array and links are back online, manually restore the primary site.

Do a re-sync of the Storage in the Primary from the secondary Array.

Failback service groups from secondary to primary.

Storage array on Cluster 1 is write-enabled.

Storage array on Cluster 2 is write-disabled.

Scenario E:

Loss – Replication link is down

There is no failover.

Restore – Replication link is up

There will be an attempt to auto-resynchronize the data in the secondary storage if the array supports it.

Scenario F:

Loss: Network link is down

GCO will alert the failure and prompt for any manual failover by the administrator.
Symmetrix Remote Data Facility (SRDF)

EMC provides SRDF that maintains a mirror image of data across Symmetrix arrays which are physically located in separate sites. The Symmetrix devices are designated as either a source or
a target and SRDF synchronizes data between the source and the target devices. SRDF transfers data using one of the following protocols:

- Synchronous (SRDF/S)
- Asynchronous (SRDF/A)
- Adaptive Copy (for bulk data transfer)

SRDF Links

The Symmetrix arrays can be linked together with Fibre Channel. Symmetrix DMX models can support mixed combinations of port type connectivity which includes Fibre Channel, ESCON, FICON, Gig-E or iSCSI. Using a T1/T3 or E1/E3 links, the distance between the target and the source can be extended to 37.5 miles apart in Synchronous Replication.

Unidirectional / Bidirectional Data Transfer

SRDF can be configured to have data transferred unidirectional or bidirectional from one storage site to another site. In unidirectional SRDF configuration all the source devices reside in the local Symmetrix array and all the target devices reside in the remote Symmetrix array. Data is transferred over SRDF link from the source devices to the target devices. In bidirectional setup, both the source and the target devices reside in each Symmetrix array as a master and mirror copies.
SRDF Topologies

Symmetrix supports other topologies like Multi-Hop and SRDF/Star. In Multi-Hop topology, three Symmetrix sites are connected using RDF links. The third RDF site is used as a backup to the remote RDF site. In SRDF/Star environment, the source site (Site A) is synchronously mirrored on a remote site (Site B) and asynchronously to another remote site (Site C).
SRDF Device Types and Groups

The individual Symmetrix devices are either assigned as a source (R1 device) or a target device (R2 device) to synchronize and maintain remote mirroring activities. If the source device fails, the data on the target device can be accessed by the local host. Once the source device is replaced, it can be resynchronized. An RDF pair consists of a source device (R1) and the corresponding target device (R2).

An RDF device group is a user-defined group consisting of a set of RDF devices belonging to a single Symmetrix array. The RDF device group could be of REGULAR, RDF1(source) or...
RDF2(target) types and is defined during the time of the group creation. Each group may contain various device lists for standard, BCV, virtual (VDEV), and remote devices. By default, a device cannot belong to more than one device group but you can modify the default behavior to allow the device to belong to multiple groups. Using device group, you can execute group commands applicable to all the devices in the group. For example, 'symrdf –g RAC establish –full' command initiates a full replication of all the devices in the RDF group RAC. All the data from the source devices are copied over the target devices and replication is established.

SRDF provides capabilities to create composite, dynamic and consistency RDF groups. A composite group can have multiple Symmetrix arrays and RDF groups. A consistency group preserves the integrity and dependent write consistency of a database distributed across multiple arrays. Consistency groups prevent dependent I/O from getting out of sync, thus ensuring the integrity and consistency of the remote data. By enabling consistency protection to a device group, if data cannot be copied from the R1 to R2 for a particular device then all the devices in the group will be made Not Ready on the link to preserve target data consistency. This feature will help databases to be recovered safely at the target location.

The SRDF devices and links maintain a (Ready, Not Ready or Write Disabled) state and based on the SRDF control operations the status of their state changes.

SRDF Setup and Management

Symmetrix command line interface (SYMCLI) can be used to configure and manage SRDF. The following examples describe some of the basic commands. For further information refer to the Symmetrix SRDF documentation.

To display all the Symmetrix array that are reachable through SRDF links

symcfg list
To list the device group by name and type

`symdg list`

To display SRDF devices that are visible to the host

`symrdf list pd`

To view the SRDF information on all the devices in a device group

`symrdf -g device_group query`
To create an RDF Device Group of type RDF1

symdg create device_group –type device_type

To add devices into an RDF Device Group

symld –g device_group add dev device_id

To create an SRDF pair

symrdf createpair –sid array_id –file devicefile –type rdf1 –rdfg grpnum –establish

Array_id is the local Symmetrix Array Id (Example: 000187400527)

The last four digits are sufficient in most cases. (Example: 0527)

The grpnum is the RDF (RA) group number. ‘symrdf list pd’ command displays the RDF Type and Group number. In the above example, the RDF group number is 11.

A devicefile contains device pairs as mentioned in the below format.
To perform establish on RDF pairs

When a full/incremental establish is initiated, the target devices(R2) are write disabled and all the tracks on the target devices are refreshed by the corresponding R1 devices.

```
symrdf –g device_group establish –full ( For a full establish )
symrdf –g device_group establish –full DEV001 ( For a full establish on one RDF pair)

symrdf –g device_group establish ( for an incremental establish )
symrdf –g device_group establish DEV001 DEV002 ( for an incremental establish on two RDF pairs)
```

Other SRDF Control Operations

Using SRDF control commands, the replication process can be halted and the target device data can be accessed for reading and writing. With a full restore command, the entire contents of the target devices are copied to the source devices.
When a restore command is issued, R2 devices data is copied to R1 devices.

With a failover command, the source devices are write-disabled and the target devices are write-enabled. The target devices are available for write access. With a failback command, the R2 data changes are copied back to the R1 data and the roles are switched back. The source (R1) devices are write-enabled and the target (R2) devices are write-disabled.
Conclusion

SFRAC using SRDF simplifies the organization's ability to recover mission-critical applications. The recovery time is quicker and provides the ability to recover in a well-defined, highly-automated manner. Using Synchronous replication, the failovers can be tested switching the remote cluster as the primary cluster without loss of transactional data. Using VCS SRDF Agent, the direction of replication is reversed very easily.